Knowledge Reuse: From Threat to Causal Models and Back!

Preliminary Meeting

Amjad Ibrahim
Prof. Dr. Alexander Pretschner

Technische Universität München
Fakultät für Informatik
Informatik 4 - Lehrstuhl für Software und Systems Engineering
Who we are

Prof. Dr. Alexander Pretschner
Since May 1st, 2012 heading Chair XXII (Software Engineering) @TUM
Room: MI – 01.11.058
Email: pretschn@in.tum.de

Amjad Ibrahim, M.Sc.
Room: MI - 01.11.059
Email: ibrhaim@in.tum.de

http://www22.in.tum.de/teaching/causal-modeling/
Agenda for today

- Seminar theme
- Goals
- Possible Topics
- Road map
- Rules
- Dates
Accountability: how?

- Establish link between behavior and the cause
- System monitoring
- Causality analysis
Oh, crap! Was that TODAY?
Counterfactual Causality

Actual World
- X does occur
- Y does occur

Possible World
- X does not occur
- Y does not occur

X causes Y: **But-for test**
Causal Models

- Signature: $S=(U, V, R)$
 - U: Set of exogenous variables
 - V: Set of endogenous variables
 - R: Associates with each variable a set of possible values
- Causal Model: $M=(S, F)$
 - F: Associates a function F_X with each $X \in V$
 In words: "F_X tells us the value of X given the values of all other variables in $U \cup V$"
 - Visualization via Causal Networks
Rock-Throwing Example

- **ST/BT** = Billy/Suzy throws
- **SH = ST** (Suzy hits)
- **BH = BT \land \neg SH** (Billy hits)
- **BS = SH \lor BH** (Bottle shatters)

The real world:
- **ST = BT = 1**
- **SH = ST = 1**
- **BH = BT \land \neg SH = 1 \land 0 = 0**
- **BS = SH \lor BH = 1 \lor 0 = 1**
Threat Modeling: Expose Master Key

- Steal_Master_Key
 - Decrypt_The_Key
 - Steal_Decrypted

Assets
- Documents
- Keys
- Logs
Causal Modeling

- Causality is model relative
 - Variable selection
 - Syntax and semantics
- The idea: reuse DAG-based attack modeling
 - 31 different models: attack/Fault trees, attack graphs, Bayesian networks..
 - Used by engineers and scientists
 - Intuitively, visually representing attack paths for managers
 - Engineers build their countermeasures based on it
 - Formal analysis quantitative and qualitative
 - Tool support
 - Some encodes the causal relation already
- Attack tree maps to causal models
 - Acyclic
 - Boolean
 - Probabilities
Possible Topics

Causal modeling +
- Tree Modeling
- Bayesian Networks in security
- Safety Models
- Attack Graphs Generation
- Domain Specific Language for the model generation
- Graph Transformation Systems
- A theory of malicious insiders
- Attack tree generation
- Business Process models
Seminar Goals

- Critical reading and understanding
- Comparing
- Classification
- Writing an exposé
- Presentation skills
Task Overview

- Independent work
 - Read and understand concepts
 - Look for papers/material beyond the initial suggestions
 - E.g. Academic publication portals, TUM library etc.
 - No Wikipedia! (Except if a source is picked – discuss with the supervisor)
 - No blogs!
- Discuss with your colleagues
- Talk with your supervisor whenever required
Roadmap

- Topic selection
- Literature review
- Intermediate submission
- Peer review
- Final submission 50 %
- Talks/Presentation 50 %
Administrative

- Master Seminar
- Maximum participants: 12

Registration

- Via http://docmatching.in.tum.de/
- From 09.02. to 14.02.18
- Do you want to be our preference?
Registration

- Choose 3 topics from the list (after matching)
 - Mail Ibrahim@in.tum.de latest by 1st March, 2018
 - Order of preference - 1 highest, 3 lowest
 - Include - Full name, IMAT number, TUM email ID

- Get a topic by email after end of matching round
Thanks!
Rules

➢ Grading
 ➢ Intermediate submission
 ➢ Table of contents
 ➢ Extended abstract
 ➢ Bibliography
 ➢ Exposé (50%) + Presentation (50%)
 ➢ Penalty for all late submissions

➢ In case of any issues (E.g. can’t find a paper)
 ➢ Google
 ➢ Ask your colleagues
 ➢ Write to your supervisor
Rules

- Compliance with the prescribed deadlines
- Compliance with all templates
- Presence in all meetings
- Participation in the final presentations in a two (or three) day block-seminar
Max. 15 pages including appendix, LNCS format

No plagiarism!
- blatant copy-paste, summarizing others’ ideas/results without reference etc. will result in immediate expulsion from the course.

Discussion of own contribution
Complete bibliography
Appendix, if needed
Content

- Don’t deviate from allotted topic
- Logical and contradiction-free reasoning
- Argue with proper sources
- If any contradictions in the source paper, don’t hide them.
Content

- Clear distinction between scientific facts and own logical conclusion
 - E.g. if something is “good” according to you, why?
 - Proper references

- Language
 - Easy to understand, simple (and short) sentences
 - Precise
 - Sensible titles
 - Sensible paragraphing
Possible Structure

- Title & abstract
- Introduction
- Topic content
- Results
- Related work
- Discussion & conclusion
- Bibliography
- Appendix
Presentation

- Ca. 30 minutes of talking
 - Clear, linear storyline.
 - Must match the exposé, but should not be a text dump
 - Possibility of discussing slides with supervisor

- Ca. 10 minutes of discussion
 - Be prepared for questions on the topic
 - Ask questions on the presented topic
Finding Literature

- TUM Library
 - Informatik
 - Others…

- Online portals
 - Springer (www.springerlink.com/)
 - ACM (dl.acm.org/)
 - IEEE (ieeexplore.ieee.org/Xplore/guesthome.jsp)
 - Google Scholar (scholar.google.com)
 - Scopus (scopus.com)