
Fakultät für Informatik
Lehrstuhl 22
Software Engineering
Prof. Dr. Alexander Pretschner

Boltzmannstraße 3 85748
Garching bei München

Tel: +49 89 289 17885,
+49 89 289 17314

Web: http://www22.in.tum.de

Automated Vulnerability Check in Continuous Integration
Bachelor Thesis

Supervisors: Prof. Dr. Alexander Pretschner, Aleieldin Salem
Email: {alexander.pretschner, salem} @ in.tum.de
Phone: +49 89 289 – 17, 314
Starting date: immediately

Context
Using components with known vulnerabilities is still one of the most frequent causes for
security incidents today [5]. It is of the essence, therefore, to possess a comprehensive
overview of the software components utilized by the software, in order to mitigate the
vulnerabilities they may withold prior to releasing the software. On the one hand, tools
like Maven1 provide a reliable overview of the used components and libraries. On the other
hand, entities like NIST through its National Vulnerability Database (NVD) provide the
required information about existing security vulnerabilities. By augmenting the two breeds
of tools/repositories we can address the problem at hand via highlighting the vulnerable
components used by the software.

There are few tools that deliver this functionality, the most prominent of which is
OWASP-Dependency-Check, a Maven plugin that checks a project’s components against
the NVD. By searching through the database for each dependency, the tool is able to
detect every associated Common Vulnerability and Exposure (CVE)2 entries associated
with different components. Nevertheless, the tool does not take any further actions to
determine whether an identified vulnerable component has any security impact on the
program e.g. by pinpointing the code segments that utilize the vulnerable components. In
other words, the output of OWASP-Dependecy-Check merely informs the user that they
are importing a vulnerable component.

Despite the vagueness of the tools output–which usually leads to a noticeable rate of false
positives, developers and testers cannot afford to ignore the reported vulnerabilities.
Consequently, they are obliged to manually search for the vulnerabilities associated with
the imported components, identify the vulnerable functions/modules, trace those back to
their own code, and reason about the technical soundness of the reported security risk.
Needless to say, the usefulness of the OWASP tool within an automated Continuous
Integration environment plummets due to the cost incurred from addressing false alarms
on regular basis.

Goal
The goal of this thesis is to extend the OWASP-Dependency-Check tool so as to enhance
its usability in a continuous integration environment. We plan to achieve this by upgrading
the tool’s output such that it (a) highlights the segment of code that uses the vulnerable
component, and (b) reports whether such vulnerability actually compromises the security
of the software.

In this project, we evaluate our tool on data provided by Secunet AG. Within this context,
the OWASP-Dependecy-Check tool is fed a Maven’s pom.xml file including information
about the project, its modules, configurations, imported components, et cetera.
Furthermore, projects are written primarily in Java, and utilize Java archive .jar files.

1https://maven.apache.org/
2http://cve.mitre.org/

https://www.secunet.com/en/


Fakultät für Informatik
Lehrstuhl 22
Software Engineering
Prof. Dr. Alexander Pretschner

Boltzmannstraße 3 85748
Garching bei München

Tel: +49 89 289 17885,
+49 89 289 17314

Web: http://www22.in.tum.de

Given the original vulnerable JAR components report generated by
OWASP-Dependency-Check, our extended version of the tool is expected to do the
following. Firstly, for every single reported component, the tool should investigate the
source code in pursuit of segments that use the vulnerable component. This includes
mining the JAR file’s bytecode, extracting lists of exposed functions, and matching them
to calls within the source code. Secondly, the tool should retrieve the CVE’s associated
with the vulnerable module from the intial report. Thirdly, due to the fact that CVE
entries are often vague–as they are meant to be read by humans, the tool should parse the
CVE entry’s description and extract the class of vulnerability e.g. buffer overflow, remote
code execution, and so forth. Lastly, the tool should support a basic, qualitative feedback
mechanism that gives a qualitative measure of whether the identified segment of source
code exposes a vulnerability. For example, using a component vulnerable do buffer
overflow should not be reported as long as the necessary boundary checks are
enforced/implemented.

Since the primary objective of this project is to enhance the original Maven plugin, our
evaluation is based on comparing the performance of, both, the original and extended
versions of such plugin. We evaluate performance using two dimensions viz., time/resource
consumption and technical soundess. For the former dimension, we record the time taken
to generate the vulnerability reports, and measure the overhead added by the extended
plugin. As for the latter dimension, we reside to human expertise to measure the false
positives and false negatives rates. Our primary hypothesis is that the extended version of
the OWASP-Dependency-Check plugin is expected to report false positive rates less that
its original counterpart. The secondary hypothesis of this thesis is that the extended
plugin is expected to report false negative rates that are, at least, as low as its original
counterpart.

Work-plan

1. Develop an understanding of the JVM ByteCode and .class-Format

2. Inspect the OWASP-Dependency-Tool and find possible optimizations to reduce
amount of false positives

3. Design and implementation of the Maven plugin

a. Extract functions from vulnerable Java component

b. Identify source code segments that utilize the extracted functions

c. Retrieve CVE entries associated with vulnerable component

d. Parse retrieved CVE entries and extract vulnerabilities

e. Report whether the source code exposes the vulnerabilities

4. Evaluate the extended plugin

a. Run original and extended plugins against different projects

b. Record evaluation metrics e.g. time/resource consumption

c. Consult human experts and record false positives and false negatives

d. Compare the outputs of the two versions

5. The final thesis document must contain:

a. Description of the problem and motivation for the chosen approach

b. Description of the theoretical background

c. Implementation description

d. Evaluation of implementation and the reduction of the amount of false positives

e. Conclusions and future work



Fakultät für Informatik
Lehrstuhl 22
Software Engineering
Prof. Dr. Alexander Pretschner

Boltzmannstraße 3 85748
Garching bei München

Tel: +49 89 289 17885,
+49 89 289 17314

Web: http://www22.in.tum.de

Deliverables

• Maven-Plugin able to run and demonstrate desired functionality

• Source Code available as official fork of the OWASP-Tool on GitHub

• Final thesis report written in conformance with TUM guidelines

References

[1] Eric Bruneton. Asm user guide, 2011.

[2] The Eclipse Foundation. Aether api, 2014.

[3] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification, Java SE 8 Edition. 2014.

[4] Oracle. Java documentation, 201.

[5] Open Web Application Security Project (OWASP). 2013 top 10 list, 2013.

[6] Jim Smith and Ravi Nair. Virtual Machines. 2005.


