FUZZING FOR VULNERABILITY DETECTION
WHO WE ARE

Prof. Dr. Alexander Pretschner
Head of Chair XXII – Software Engineering @TUM
since May 1st, 2012

Saahil Ognawala
Office: MI - 01.11.041
Email: ognawala@in.tum.de

Our website: http://www22.in.tum.de/
FUZZING (OR FUZZ TESTING) FOR VULNERABILITY DETECTION

- Introduction to fuzzing
 - Popular software testing technique
 - Fast, automated, coverage driven
- Variety of domains
 - command line, GUI, mobile, web-apps etc.
- Seminar homepage
 - http://www22.in.tum.de/en/fuzz-testing-seminar/
FUZZING FOR VULNERABILITY DETECTION

GOAL

- Understanding with respect to fuzzing
 - Concepts of pure fuzzing
 - How are input mutations performed?
 - How is whitebox fuzzing different from blackbox fuzzing?
 - How can whitebox information be used to enhance fuzzing?
 - Advanced techniques and target-specific implementations

- Others
 - Critical reading and understanding
 - Summarizing
 - Classification
 - Writing an exposé
 - Presentation skills
OVERVIEW OF FUZZING

- Start testing with “seed inputs”
- Observe (record) program behaviour
 - Blackbox
- Change input (flip-bits, XOR, etc.) and test again
- New program behaviour?
 - SUCCESS!
OVERVIEW OF FUZZING

- Variant of random testing
 - Input mutation, instead of random sampling.
 - Basic fuzzers mutate inputs randomly.
- Automation is the key!
 - “Move Mutate fast, break things”
 - Dependant only on (input,output)
- High path coverage* due to lots of testing rounds

*highly subject to conditions
TASKS OVERVIEW

- Independent work
 - Read and understand concepts
 - Look for papers/material beyond the initial suggestions
 - Eg. Academic publication portals, TUM library etc.
 - NO Wikipedia! (Except if a source is picked - discuss with the supervisor)
 - NO blogs!
- Discuss with your colleagues
- Regularly get (and hopefully incorporate) reviews on your drafts from your supervisor.
- Talk with your supervisor whenever required (use this power judiciously)
RULES

- Compliance with the prescribed deadlines
- Compliance with all templates
- Presence in all meetings
- Participation in the final presentations in a two (or three) day block-seminar
RULES

- Grading
 - Intermediate submission (0.3 grade point bonus* mandatory!)
 - Table of contents
 - Extended abstract
 - Bibliography
 - Exposé (50%) + Presentation (50%)
 - Penalty for all late submissions
- In case of any issues (e.g. can’t find a paper)
 - Google
 - Ask your colleagues
 - Write to the Saahil Ognawala
INTERMEDIATE SUBMISSION

- Ca. 2 pages
- Extended abstract
 - Introduction
 - Problem statement and goals
 - Short description of content of each subsection
 - Description of your own contribution/critique
- Bibliography
EXPOŠÉ

- Max. 15 pages including appendix, LNCS format
- No plagiarism!
 - blatant copy-paste, summarizing others’ ideas/results without reference etc. will result in immediate expulsion from the course.
- Discussion of own contribution
- Complete bibliography
- Appendix, if needed
Don’t deviate from allotted topic

Logical and contradiction-free reasoning

Argue with proper sources

If any contradictions in the source paper, don’t hide them.
Clear distinction between scientific facts and own logical conclusion
- Eg. if something is “good” according to you, why?
- Proper references

Language
- Easy to understand, simple (and short) sentences
- Precise
- Sensible titles
- Sensible paragraphing
CONTENT

- Tables and pictures
 - Cite sources
 - Must not be blurry
 - Large enough to be read in print
 - Must be referenced in text
 - Consistent numbering
- Bibliography
 - Must be referenced in text
 - Consistent numbering
 - Citation must include - Authors’ names, title, year of publication, venue (or publisher)
POSSIBLE STRUCTURE

- Title & abstract
- Introduction
- Topic content
- Results
- Related work
- Discussion & conclusion
- Bibliography
- Appendix
PRESENTATION

- Ca. 30 minutes of talking
 - Clear, linear storyline.
 - Must match the exposé, but should not be a text dump
 - *Possibility of discussing slides with supervisor*

- Ca. 10 minutes of discussion
 - Be prepared for questions on the topic
 - Ask questions on the presented topic
FINDING LITERATURE

- TUM Library
 - Informatik
 - Others...
- Online portals
 - Springer (www.springerlink.com/)
 - ACM (dl.acm.org/)
 - IEEE (ieeexplore.ieee.org/Xplore/guesthome.jsp)
 - Google Scholar (scholar.google.com)
 - Scopus (scopus.com)
IMPORTANT DATES

- Intermediate submission deadline: 31st October, 2016
- Submission deadline for first exposé draft: 28th November, 2016
- Discussion (paper+slides) with supervisor and revision: 5th Dec. - 19th Dec. 2016
- Exposé submission deadline: 3rd January, 2017
- Receive peer’s paper for review: 6th January, 2017
- Peer review deadline: 13th January, 2017
- Camera ready deadline (paper+slides): 20th January, 2017
- All documents must be submitted as PDF-files
- After submission of the slides, individual appointments for feedback for all students
- Block-seminar date(s) during the end of January. TBA.
REGISTRATION

- Matching system: http://docmatching.in.tum.de/
- Choose 3 topics from the list
 - Mail ognawala@in.tum.de latest by Thursday, 30th June, 2016
- Order of preference - 1 highest, 3 lowest
- Include - Full name, IMAT number, TUM email ID
- Get a topic by email after end of matching round
OVERVIEW OF TOPICS

- Blackbox testing with fuzzing
- Blackbox vs. whitebox fuzzing
- Advanced fuzzing strategies with whitebox optimizations
- Input mutation strategies in fuzzing
- Role of machine learning in fuzz testing
- Role of genetic algorithms in fuzz testing
- Compositional analysis of large-scale software with fuzzing
- Vulnerability discovery in mobile applications
- Vulnerability discovery in web applications
- File format and protocol fuzzing
-or agree upon a topic with the supervisor....
THANK YOU

ognawala@in.tum.de